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Multivariate Receptor Modeling for Temporally
Correlated Data by Using MCMC

Eun Sug Park, Peter Guttorp, and Ronald C. Henry

Multivariate receptor modeling aims to estimate pollution source pro� les and the amounts of pollution based on a series of ambient
concentrations of multiple chemical species over time. Air pollution data often show temporal dependence due to meteorology and/or
background sources. Previous approaches to receptor modeling do not incorporate this dependence. We model dependence in the data
using a time series approach so that we can incorporate extra sources of variability in parameter estimation and uncertainty estimation. We
estimate parameters using the Markov chain Monte Carlo method, which makes simultaneous estimation of parameters and uncertainties
possible. The methods are applied to simulated data and 1990 Atlanta air pollution data. The results show promise towards the goal of
accounting for the dependence in the data.

KEY WORDS: Air pollution; Chemical species; Compositions; Dynamic models; Gibbs sampler; Kalman � lter; Metropolis–Hastings
algorithm; Source pro� le.

1. INTRODUCTION

An important problem in environmental statistics is to deter-
mine the main sources of air pollution from data obtained
at a given station, or receptor. To do so, data need to con-
tain observations on the amounts (concentrations) of different
chemical compounds, or species, in the atmosphere that are
received (measured) at the station. Samples of airborne pollu-
tion are subjected to extensive chemical analysis. Contributing
sources leave chemical � ngerprints in the sample. The amount
of pollution coming from each source can be estimated if the
chemical � ngerprints of the sources are known. This sub� eld
of environmental statistics is called receptor modeling.

In this article, the pollutants of concern are volatile organic
compounds (VOC) observed in downtown Atlanta, GA during
July and August of 1990. VOCs are important because some,
such as benzene and toluene, are toxic and many react with
nitrogen oxides in the air to form ozone, which can reach dan-
gerous levels in many areas. The chemical species of inter-
est are predominately hydrocarbons containing from 2 to 10
carbon atoms. Methane with one carbon is excluded because
of its large background concentration from ubiquitous natural
sources and the fact that methane is of no interest to air pollu-
tion regulators. For this reason, the total amount of VOCs in
the air is commonly known as total nonmethane organic com-
pounds (TNMOC). The VOCs in this study were determined
by an innovative automated gas chromatograph (GC) that sam-
pled the air for 50 minutes each hour and analyzed the sample
in the remainder of the hour (Purdue 1991). The detector of
the GC responds to the number of carbon atoms in the sample,
therefore the units are in parts per billion by volume of car-
bon (ppbC). The mass of the VOCs in this study is dominated
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by carbon, so these units are proportional to mass units such
as nanograms per cubic meter used for airborne particulate
matter. Of the more than 1,200 hourly observations of more
than 40 VOCs, a dataset of 538 observations on 38 species
(37 VOC and TNMOC) measured at one location was selected
(Henry, Lewis, and Collins 1994). The background concen-
trations of these VOCs are small compared to the very large
sources in the urban center of Atlanta and can be ignored.
These major sources of VOCs are three in number and all are
related to gasoline and diesel fueled vehicles. Obviously, there
is the tailpipe exhaust of the vehicles when being driven. How-
ever, vehicles also emit VOCs by evaporation when sitting still
and when running. These evaporative emissions can be classi-
� ed as two sources, one source with the composition of whole
gasoline, and another source with the composition of gasoline
headspace vapor. Headspace vapor is the vapor above gaso-
line in a container, such as a fuel tank. This vapor is enriched
in the more volatile compounds in gasoline, e.g. n-butane and
isopentane. Diesel fuel is much less volatile than gasoline and
evaporative emissions of diesel-fueled vehicles are negligible.

The assumptions of receptor modeling require conservative
species. The species in the analysis must be conserved (in a
relative sense, that is, with respect to the other species) dur-
ing transport between the source and the receptor because, as
shown later, the fundamental equations assume mass balance
(see, e.g., Hopke 1985, 1991, 1997). Virtually all the VOCs
in the dataset are reactive in the atmosphere and thus do not
strictly obey mass conservation. The receptor modeling in this
article is restricted to species which have atmospheric lifetimes
(based on reaction rates with the hydroxyl radical) that are
long compared to the travel time between source and receptor,
which in this case is less than 2 hours. Thus, these species can
be considered to be unreactive because their rate of reaction
is too slow to signi� cantly alter their concentrations between
the source and the sampling site. Inclusion of highly reactive
species will distort the source � ngerprints to the extent that the
respective source types in the ambient data cannot be identi-
� ed. Also, in many environmental applications, some species
have a few common major sources and some have many more
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minuscule sources. We are concerned with the major pollu-
tion sources, not all sources since there could be hundreds of
sources in nature, and it would be impossible or meaningless
if we would try to identify all of those sources. Owing to
these limitations (chemical reactivity and the number of pol-
lution sources), the � rst important step in multivariate recep-
tor modeling is to select an appropriate subset of species for
an analysis though we do not pursue this issue in this arti-
cle. By ‘appropriate’, we mean, ‘relatively unreactive species
contributed by major pollution sources’. Because our goal is
to model the three vehicle-related source emissions that are
dominant in downtown Atlanta, the species related to other
sources are also excluded. For instance, Toluene is excluded
from the analysis because it is contributed by an additional
solvent source as well as by the three vehicle-related sources,
and inclusion of it would change the number of sources to be
modeled. Nine vehicle-related species (see Table 1) are thus
selected out of 38 species based on an environmental expert’s
judgment, resulting in a � nal dataset of 538 observations on
nine variables (VOCs). These particular species have lifetimes
in the atmosphere that are long (greater than 12 hours) com-
pared to the time scale of the observations and transport times
from source to receptor, which for our data are both about
1 hour.

Traditionally, there have been two different approaches in
receptor modeling, the chemical mass balance (CMB) recep-
tor model and the multivariate receptor model, depending on
whether the chemical � ngerprints of the sources are assumed
known or not (see Henry, Lewis, and Hopke 1984, Henry
1991). In receptor modeling terms, the source � ngerprint is
often called the source composition pro� le. It consists of the
relative amount of each chemical species in the emissions
from the source, and so is unit-free. In many cases, source
composition pro� les are unavailable either because we do not
know the contributing sources, or because direct measurement
of source emissions is very dif� cult and expensive (e.g., for
mobile sources). Even in the case where direct source mea-
surement is available, it still may not be representative of
the source emissions in the airshed under consideration (e.g.,
the distribution of vehicles for tunnel measurements of auto-
emissions may not be the same as that which is contributing
most heavily at the receptor). Pollutant transport, reactions,
measurement errors, variations in source compositions, and
the contribution of minor sources can also make the devia-
tion larger between the measured source pro� les and the true
source compositions for the ambient data.

In Atlanta, there were also three vehicle-related pro� les
obtained by direct source measurements during the sum-
mer of 1990: highway tunnel measurements, whole gasoline,
and gasoline headspace (Conner, Lonneman, and Seila 1995;

Table 1. Measured Source Composition Pro’ les in Atlanta

Source acetylene propene nButane 2MPentan 3MPentan benzene CyHxC2MHx 2,3-DMP 2,2,4-TMP

Roadway 0181 0094 0197 0116 0069 0132 0049 0043 0120
Gasoline 0 0002 0197 0221 0138 0108 0116 0067 0152
Headspace 0 0007 0685 0144 0075 0034 0021 0014 0021

NOTE: Each source pro’ le is normalized to sum to one.

Henry et al. 1994), which may allow an application of CMB
model (assuming those measured source compositions are
not biased). They are given in Table 1 for nine selected
vehicle-related VOC species. It should, however, be noted that
those direct source measurements were obtained, under rather
restricted conditions, independently of the data (e.g., roadway
compositions were obtained as highway tunnel measurements
during morning rush hour). In this article, we estimate the
compositions for the three vehicle-related sources in down-
town Atlanta; roadway emissions, whole gasoline, and gaso-
line headspace vapor from ambient data using a multivariate
receptor model. This will make an objective comparison
between the estimated source compositions based on the ambi-
ent data and the measured source compositions possible.

The chemical mass balance equation is the physical basis
for most receptor models (both CMB models and multivari-
ate receptor models). Mathematically, it can be written (after
inclusion of error terms) as follows:

yt
D

qX

kD1

� tkPk
C ˜t1 t D 11 : : : 1 n0 (1)

Here, yt
D 4yt11 yt21 : : : 1 ytp5 is the measured concentra-

tions of p chemical species at time t, q is the number of
sources, Pk

D 4pk11 pk21 : : : 1 pkp5 is the source composition
pro� le (source � ngerprint) for source k, � tk is the contribution
from source k in time t, and is ˜t

D 4˜t11 ˜t21 : : : 1 ˜tp5 is the
measurement error associated with yt . As already mentioned,
the source composition pro� les Pk 4k D 11 : : : 1 q5 are assumed
known in CMB models, whereas they are the unknown key
parameters in multivariate receptor models. In matrix terms,
the model (1) can be written as

Y D AP C E1 (2)

where A is n� q source contribution matrix, P is q � p source
composition matrix, and E is n� p error matrix.

The assumption of independence among the observations yt

has been made either implicitly or explicitly in all previous
approaches to receptor modeling, see, for instance, Hopke
(1991), Henry (1991), Yang (1994), Gleser (1997), Park
(1997), and Park, Spiegelman, and Henry (2001). Air pollu-
tion data, however, are usually obtained as a series of mea-
surements on concentrations of aerosols over time, and mete-
orology often induces some degree of dependence in the data.
Observations closer in time tend to be more correlated than
observations farther apart in time. In some cases the assump-
tion of independence may not be grossly wrong because envi-
ronmental data usually contain many missing values or erro-
neous observations, and after initial screening of the data, time
separation between any pair of measurements may become
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Figure 1. Autocorrelation Function (ACF) Plots of Y for the Atlanta Data.

large enough so that serial correlation can be ignored in the
screened data. This, of course, is not always the case. Figure 1
contains the autocorrelation function (ACF) plots for nine
selected vehicle-related species for the Atlanta data.

Assuming that the measured compositions in Table 1 are
the true source compositions, that is, P is known in model
(2), A can be estimated easily, for instance, as an ordinary
least squares (OLS) solution, bAOLS D YP 04PP 05ƒ1, if we ignore
the dependence structure in the data and vice versa, that is,
bPOLS

D 4A0A5ƒ1A0Y if A is known or estimated � rst. This was
done in almost all previous work without checking the inde-
pendence assumption. Figure 2 shows the ACF plots of the
residuals calculated as Y ƒ bAOLSP for each of nine species,
and Figure 3 shows ACF plots of OLS estimates of source
contributions, bAOLS.

All three plots, Figures 1–3, reveal signi� cant serial corre-
lation in the data. It is well known in time series literature that
in the presence of the correlated residuals, the standard error
(not adjusting for the correlation in the residuals) of OLS esti-
mate of the trend (which may be regarded as P in our model)
in the regression is often grossly wrong. Although the correct
standard error of OLS estimate may be obtained by adjust-
ing for the correlation, it is still not the best estimate since
the generalized least squares estimate, taking the correlation
into account in the estimation procedure, has smaller stan-
dard error.

The goal of this article is to extend multivariate recep-
tor models to account for temporal dependence in the data
so that we can incorporate that source of variability into the
estimation of parameters and uncertainties. In Section 2, we

introduce models accounting for time dependence in the obser-
vations. Estimation of parameters is discussed in Section 3.
Sections 4 and 5 contain examples from simulated data and
the Atlanta air pollution data, respectively. Finally, concluding
remarks are made in Section 6.

2. MODEL

The model (1) may be viewed as a factor analysis model
in the sense that Y is the only observable quantity whereas q

(number of factors), P (factor loading matrix), and A (factor
score matrix) are all unknown quantities that need to be esti-
mated (or predicted). Although estimation of q is not a triv-
ial problem, it is not the purpose of this article, and so it is
assumed as known throughout this article.

It is well-known that, without imposing additional con-
straints on the parameters, the factor analysis model is not
identi� able even with known number of sources, q. There have
been several attempts to avoid nonidenti� ability of the factor
analysis model in multivariate receptor modeling by imposing
more restrictive constraints on either the P , or the A matrix
(see Henry and Kim 1990; Henry et al. 1994; Yang 1994;
Henry 1997; Park 1997; Park, Spiegelman, and Henry 2001).
These additional constraints on the parameters are called
“identi� ability conditions.” As a matter of fact, there could be
many different sets of identi� ability conditions, each making
sense in its own context (see Park et al. 2001 for some iden-
ti� ability conditions that are meaningful in receptor models).
Here, we borrow conditions from the con� rmatory factor anal-
ysis model (see e.g., Anderson 1984), which is often realistic
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Figure 2. Autocorrelation Function (ACF) Plots of the Residuals (Y - bAOLSP, where P is the measured source compositions in Table 1) for the
Atlanta Data.

Figure 3. Autocorrelation Function (ACF) Plots of Source Contributions (bAOLS) for the Atlanta Data.
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in air pollution studies. The assumptions are:

C1. There are at least q ƒ1 zero elements in each row of P .
C2. The rank of P 4k5 is q ƒ 1, where P 4k5 is the matrix

composed of the columns containing the assigned 0s
in the kth row with those assigned 0s deleted.

In terms of air pollution data, C1 implies that some pol-
lutants (corresponding to zeros) are not contributed by a par-
ticular source, and C2 implies that no two sources share the
same set of zeros. This set of assumptions is weaker than
the tracer element assumption requiring that each source con-
tributes only once, which was traditionally made in receptor
modeling as a way of resolving the nonidenti� ability problem
(see Park et al. 2001). Under the above conditions, the source
pro� les, P , are identi� ed up to normalization, which is enough
for the purpose of a receptor model: as long as the relative
amount of each species in a source is determined, a source
can be identi� ed.

Thus, our analysis in this article is conditional on the model
that assumes a known number of sources and predetermined
identi� ability conditions, and focuses on developing a factor
analysis model for temporally correlated observations. Alter-
natively, Park, Oh, and Guttorp (2000) discusses the prob-
lem of model uncertainty in multivariate receptor modeling by
treating q and identi� ability conditions as unknown under the
assumption that the observations are independent. A Bayesian
approach is used in Park et al. (2000), considering the poste-
rior probabilities for a range of plausible models obtained by
varying q and identi� ability conditions.

Assume that the yt in (1) are dependent. We � rst need to
decide how to model this dependence. It seems reasonable
to assume that the source contribution at time t depends on
the past source contributions (as Figure 3 indicates). Also,
it is often the case that ˜t contains not only pure measure-
ment error but also all the remaining sources of variability
that are not explained by the systematic part of our model,
such as background sources (unmodeled minor sources), vari-
ations in source compositions, and meteorology. Then it is
likely that the ˜t are also correlated in time due to the effect
of those (see Figure 2). We may decompose ˜t into two terms
˜t

D ‡t
C„t , where ‡t represents variability correlated in time

owing to meteorology or background sources, and „t repre-
sents residual, unpredictable variability owing to pure mea-
surement error, independent over time.

We consider the model

yt
D �tP C ‡t

C „t1

where � t
D 4�t11� t21 : : : 1 � tq5 is a stationary vector

AR(1) process centered at � D 4�11�21 : : : 1 �q 5, ‡t
D

4‡t11 ‡t21 : : : 1‡tp5 is a stationary vector AR(1) process cen-
tered at 0, and „t

D 4„t11 „t21 : : : 1 „tp5 Np401è5 where è D
diag 4‘ 2

1 1‘ 2
2 1 : : : 1‘ 2

p 5. We use ‘Nk4¢1 ¢5’ to denote k-dimen-
sional multivariate normal distribution throughout this article.
We also assume that the elements of P are all nonnegative
because the source composition cannot contain any negative
values. This model may be written in dynamic linear model

(DLM) form (West and Harrison, 1997) as

Observation equation: yt
D � tP C ‡t

C „t1 „t Np401è51

State equation:

� t
D �C 4� tƒ1

ƒ �5ê C ut1 ut Nq401U 51

‡t
D ‡tƒ1ä C vt1 vt Np401 V 51 (3)

where ut
D 4ut11 ut21 : : : 1 utq5, ê D diag 4”11 ”21 : : : 1”q5, ”k

is an AR coef� cient for the kth source contribution, vt
D

4vt11 vt21 : : : 1 vtp5, ä D diag4ˆ11 ˆ21 : : : 1 ˆp5, and ˆj is an AR
coef� cient for jth element of ‡t . Note that marginal distribu-
tion for each � t is

�t Nq4�1 W 51 W D êWê C U (4)

and for each ‡t is

‡t Np401 M51 M D äMä C V 0 (5)

Equivalently, model (3) can be reparameterized in terms of
the centered source contributions. Let ƒt

D � t
ƒ� and Œ D �P .

Then we have

Observation equation:

yt
D Œ C ƒtP C ‡t

C „t1 „t Np401 è51

State equation:

ƒt
D ƒtƒ1ê C ut1 ut Nq401U 51

‡t
D ‡tƒ1ä C vt1 vt Np401V 50 (6)

The marginal distribution for each ƒt is

ƒt Nq401W 51 W D êWê C U (7)

and for each ‡t remains the same as (5). Recall that under
identi� ability conditions C1 and C2, P is identi� ed up to a
normalizing constant, as is the mean contribution �. In other
words, � is not identi� ed in model (3) unless we have extra
information such as the total mass of pollutant particles (a
normalizing constant for P). For this reason, we proceed with
the parameterization (6) here. However, it should be noted
that the parameterization (3) might be preferred if we have
additional information to remove unidenti� ability of �.

3. ESTIMATION

As the model gets complicated by the inclusion of more
parameters, Markov chain Monte Carlo (MCMC) simu-
lation (Tierney 1994; Chib and Greenberg 1995; Besag,
Green, Higdon, and Mengersen 1995; Gilks, Richardson, and
Spiegelhalter 1996) seems to be an attractive approach for
parameter estimation. Also note that the parameters of the
models (3) or (6) are all unknown, and the problem of param-
eter estimation is essentially nonlinear, but the MCMC method
makes the problem linear by use of conditional distributions.
We employ an MCMC method as a computational tool under
a Bayesian framework. As mentioned in Section 2, a multi-
variate receptor model can be viewed as a special type of a
factor analysis model with the constraints that the elements of
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factor loading matrix P should all be nonnegative. These non-
negativity constraints and model identi� ability conditions C1
and C2 can be absorbed into the prior distribution for P .

Under the normal error assumption on „, the likelihood
f 4Y — ¢ ¢ ¢ 5 is written as

f Y — ¢ ¢ ¢ D —2� è—ƒ n
2

exp ƒ1

2
trèƒ1

nX

tD1

4yt
ƒ Œ ƒ ƒtP ƒ ‡t5

0

� 4yt
ƒ Œ ƒ ƒtP ƒ ‡t5 0 (8)

We use ‘— ¢ ¢ ¢ ’ to denote conditioning on all other variables. For
the sake of brevity, Œ is assumed known as it is an incidental
parameter here. For a prior distribution p4¢5, we assume that

p4P1è1ê1U 1ƒ11 : : : 1 ƒn1ä1V 1‡11 1 : : : 1 ‡n5

D p4P5p4è5p4ê5p4U 5p4ƒ11 : : : 1 ƒn
—ê1U 5

� p4ä5p4V5p4‡11 : : : 1‡n
—ä1V 50

Note that (6) implies

p4ƒ11 : : : 1 ƒn
—ê1U

D 42� 5ƒ n
2 —W —ƒ 1

2 exp ƒ 1
2

ƒ1W
ƒ1ƒ 0

1 U
ƒ nƒ1

2

� exp ƒ1

2
trU ƒ1

nX

tD2

4ƒt
ƒ ƒtƒ1ê504ƒt

ƒ ƒtƒ1ê5

and

p4‡11 : : : 1 ‡n
—ä1 V 5

D 42� 5ƒ n
2 —M —ƒ 1

2 exp ƒ 1

2
‡1M

ƒ1‡0
1

—V —ƒ nƒ1
2

� exp ƒ1
2

trV ƒ1
nX

tD2

4‡t
ƒ ‡tƒ1ä504‡t

ƒ ‡tƒ1ä5 0

Based on a series of observations y11 : : : 1 yn, we are
interested in sampling from the full posterior � 4P1è1ê1 U ,
ƒ11 : : : 1 ƒn1ä1V 1‡11 : : : 1 ‡p

— Y 5. We use “block-at-a-time”
Metropolis–Hastings algorithm (Chib and Greenberg, 1995).
We shall make use of seven move types in implementing
MCMC:

(a) updating P ,
(b) updating è,
(c) updating ê,
(d) updating U ,
(e) updating ä,
(f) updating V ,
(g) updating ƒ11 : : : 1 ƒn, and ‡11 : : : 1 ‡n.

Let â be n � q matrix of which rows are ƒt , H be
n � p matrix of which rows are ‡t , t D 11 : : : 1 n, and 1n be
n-dimensional column vector of ones. Letting

eP D 4â 0â5ƒ1â 04Y ƒ 1n † Œ ƒ H51

S D 4Y ƒ 1n † Œ ƒ H ƒ â eP504Y ƒ 1n † Œ ƒ H ƒ â eP51

and using the orthogonality properties associated with eP (see
Press 1982), equation (8) can be written as

—2� è—ƒ n
2 exp ƒ 1

2
trèƒ1S

� exp ƒ 1
2

trèƒ14P ƒ eP504â 0â54P ƒ eP5

/ exp ƒ1

2
4vec P ƒ vec eP504èƒ1 † â 0â54vecP ƒ vec eP5 0

Let the prior distribution for P be

p4P5 D p4vec P5 Npq4c01C05

� I4Pkj ¶ 01 k D 11 : : : 1 q1 j D 11 : : : 1 p51

where c0 is a pq-dimensional vector and C0 is a pq � pq-
dimensional diagonal matrix. Enforcing the constraints C1
and C2 is equivalent to using a degenerate point prior for some
of the elements of P . We set q � 4q ƒ 15 elements of c0 and
the corresponding elements of C0 to be zero, which makes the
prior distribution for P a truncated singular normal distribu-
tion (though still proper). Then the resulting full conditional
posterior distribution � 4P — ¢ ¢ ¢ 5 is again a truncated singular
normal distribution, which can be written as

vecP— ¢ ¢ ¢ Npq4c1 C5

� I4Pkj ¶ 01 k D 11 : : : 1 q1 j D 11 : : : 1 p51

where

c D C84èƒ1 † â 05vec 4Y ƒ 1n † Œ ƒ H5 C Cƒ
0 c091

C D 4èƒ1 † â 0â C Cƒ
0 5ƒ11

where Cƒ
0 is a generalized inverse of C0. Since both è and C0

are diagonal, samples of P can be obtained by sampling a sub-
vector of vec P corresponding to each column of P separately
as in Park et al. (2000), using a simple Metropolis–Hastings
algorithm.

Under a usual inverse gamma, prior distribution for ‘ 2
j ,

‘ ƒ2
j Gamma4�0j1‚0j5, j D 11 : : : 1 p, with the parameteriza-

tion in which the mean and variance are �0j=‚0j and �0j=‚2
0j ,

respectivley, the full conditional for 8‘ 2
j 9 is

‘ ƒ2
j

— ¢ ¢ ¢ Gamma �0j
C 1

2
n1 ‚0j

C 1

2
dj 1

where dj is the jth diagonal element of the matrix 4Y ƒ 1n †
Œ ƒ H ƒ âP504Y ƒ 1n † Œ ƒ H ƒ âP5. This can be easily sam-
pled using a Gibbs sampler.

Moves (c)–(g) require Metropolis–Hastings steps. We use
the same strategy as those given in Chib and Greenberg (1995)
and West and Harrison (1997) to update ê and U , respectively.
Under uniform priors for ”k, writing ” D 4”11 : : : 1”q5 for
the diagonal of ê, and ã D diag4ƒtƒ15, the full conditional
posterior density for ê, � 4”— ¢ ¢ ¢ 5, is proportional to

g4ê5fnor4”—’1T5 I40 < ” < 151
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Park, Guttorp, and Henry: Multivariate Receptor Modeling 1177

where fnor is the q-variate normal density func-
tion, Tƒ1 D Pn

tD2 ã0U ƒ1ã1’ D T
Pn

tD2 ƒtU
ƒ1ã01 g4ê5 D

—W —ƒ 1
2 exp4ƒ 1

2
ƒ1W

ƒ1ƒ 0
15, W D êWê C U , and I40 < ” <

15 D Qq

kD1 I40 < ”k < 15. We use Nq4’1 T5 as a proposal
distribution for ” (independent proposal) and accept the pro-
posal ” ü with probability

min 11
g4ê ü 5 I40 < ” ü < 15

g4ê5 I40 < ” < 15
1

where W ü D ê ü W ü ê ü C U .
The full conditional posterior for U , � 4U — ¢ ¢ ¢ 5, is propor-

tional to

p4U5g4U 5—U —ƒ nƒ1
2 exp ƒ1

2
trU ƒ1B 1

where B D Pn
tD24ƒt

ƒ ƒtƒ1ê504ƒt
ƒ ƒtƒ1ê5 and g4U 5 D

—W —ƒ 1
2 exp4ƒ 1

2
ƒ1W

ƒ1ƒ 0
15. Note that B follows a Wishart distri-

bution with parameters U and nƒ 11B W 4U1 nƒ15. Under
an inverted Wishart prior U W ƒ14ë01 r05, the conditional
distribution of U given B is U —B W ƒ14ë0 C B1 r0 C n ƒ 15.
Here we use the parameterizations of the Wishart and inverted
Wishart distributions as given in Anderson (1984). The full
conditional posterior for U is proportional to

g4U 5fWishartƒ14U —ë0
C B1 r0

C n ƒ 151

where fWishartƒ1 is the inverted Wishart density function. We
use this inverted Wishart distribution W ƒ14ë0 C B1 r0 C nƒ 15
as a proposal distribution for U . The acceptance probability
in this case is given by

min 11
g4U ü 5

g4U 5
1

where W ü D êW ü ê C U ü .
Move types (e) and (f) are essentially the same as move

types (c) and (d) with substitution of ä, V , M, and ‡ for ê,
U , W , and ƒ, respectively.

Move (g), updating ƒ and ‡, can be implemented by
forward-� ltering, backward-sampling algorithm (West and
Harrison 1997) applied to yt

ƒ Œ. Model (6) can be rewrit-
ten as

yt
ƒ Œ D ‹tF C „t and ‹t

D ‹tƒ1G C �t1 (9)

where ‹t
D 6ƒt ‡t7 is the state vector at time t, F D 6 P

Ip� p
7, G

is the 4k C p5 � 4k C p5 matrix, G D 6 ê 0
0 ä

7, and �t
D 6ut vt7

with variance matrix ì D 6 U 0
0 V

7. To sample from the full con-
ditional posterior � 4‹11‹21 : : : 1 ‹n

— ¢ ¢ ¢ 5, we sequentially sim-
ulate the individual vectors ‹n1 ‹nƒ11 : : : 1 ‹1 as follows:

1. Sample ‹n from Nq4mn1Cn5 where mn and Cn are
obtained from the Kalman � ltering recurrences

mtC1 D mtG C etC1KtC11

etC1
D ytC1

ƒ Œ ƒ mtGF1

KtC1
D 4è C F0RtC1F5ƒ1F0RtC11

CtC1
D RtC1

ƒ RtC1FKtC11

RtC1 D GCtG
0 C ì0

2. For each t D n ƒ 11 n ƒ 21 : : : 1 1, sample ‹t from
Nq4ht1 Ht5 where ht

D mt
C 4‹tC1

ƒ atC15Bt , Ht
D Ct

ƒ
B0

tRtC1Bt , Bt
D Rƒ1

tC1GCt1 atC1
D mtG, and ‹tC1 is the

value just sampled.

Note that the likelihood (8) is invariant with respect to
changes in scale of â or P (even after the identi� ability con-
ditions C1 and C2 are taken into account), and the parameters
â (and so U ) and P are identi� ed except for multiplication
by a diagonal matrix (consisting of scale constants), that is,
we would estimate âDƒ14Dƒ1UDƒ15 and DP unless we use a
very precise informative prior. As already mentioned, knowing
(estimating) P up to a normalizing constant ful� lls the objec-
tive of receptor modeling. It also can be shown that a scale
constant matrix D (although it is unknown and depends on the
initial value of the parameters) does not vary from iteration
to iteration within an MCMC run. In this sense, our MCMC
scheme is self-consistent, and so the adjustment for the scale
constant matrix does not need to be made at each step. If the
scale constant (the matrix D) is ever known, the adjustment
can be directly applied to the posterior summaries simply by
multiplying (or dividing) by D. Care must be taken in specify-
ing the initial values for the parameters or hyperparameters for
the prior distributions to ensure that at least they are approxi-
mately on the same scale.

Finally, the posterior probability statements can be made
directly on the identi� able quantities such as the normalized
P or the scaled matrix of U (i.e., the correlation matrix of â )
as discussed in Besag et al. (1995).

Remark 1. When ƒt and ˜t are assumed to be indepen-
dent, it can be easily shown that under prior distributions ƒt

Nq401æ05, the full conditional distribution for ƒt1 � 4ƒt
— ¢ ¢ ¢ 5,

is a normal distribution through conjugacy, that is,

ƒt
— ¢ ¢ ¢ Nq44yt

ƒ Œ5èƒ1
˜ P 04Pèƒ1

˜ P 0 C æƒ1
0 5ƒ11

4Pèƒ1
˜ P 0 C æƒ1

0 5ƒ151

where è˜
D cov4˜t5 D diag4‘ 2

…11 : : : 1‘ 2
˜p5. This can be

updated using a Gibbs sampler, and with moves (a) and (b)
where Y ƒ 1n † Œ ƒ H and ‘ 2

j are replaced by Y ƒ 1n † Œ

and ‘ 2
˜j , respectively, it completes one cycle of MCMC when

the observations are treated as independent. In Section 4, this
approach is also compared to our time series approach when
the observations are actually dependent.

4. SIMULATION

The data are generated by model (3) with p D 7, n D 200,
q D 3,‘ 2

1
D ¢ ¢ ¢ D‘ 2

7
D 1, ”1

D ”2
D ”3

D 08, �0
D 4101121145,

U D ‘ 2
u I3� 3 where ‘ 2

u
D 3, ˆ1

D ¢ ¢ ¢ D ˆ7
D 07, V D ‘ 2

v ¢ I7� 7

where ‘ 2
v

D 1. The initial values of � and ‡ are given by �1k
D

�0
C

p
‘ 2

u =41 ƒ ”2
k5Zk , where Zk N 40115, k D 11 213, and

‡1j
D

q
‘ 2

v =41ƒ ˆ2
j 5Zj , j D 11 : : : 1 7, respectively. The true

source composition matrix P0 (normalized to sum to 1) is
given in Table 2. It follows from (4) and (5) that W D 8033 ¢
I3� 3 and M D 1096 ¢ I7� 7. This is equivalent to generating the
data from model (6) with ƒ1k

D
p

‘ 2
v =41 ƒ ”2

k5Zk and Œ0
D

�0P0
D 4570961540441260111470151290631 270901 550635. The
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Table 2. True Source Composition Pro’ les (P0) for Simulated Data

1 2 3 4 5 6 7

Source 1 0 0248 0 0102 0306 0128 0216
Source 2 0242 0 0266 0 0009 0044 0440
Source 3 0311 0250 0039 0302 0 0099 0

NOTE: Each source pro’ le is normalized to sum to one.

number of sources, q , is assumed to be known throughout the
simulation.

In implementing MCMC, we take �0j
D 3 and ‚0j

D 2 for
the prior on ‘ 2

j , j D 11 : : : 17, r0
D 10, and ë0

D 20 ¢ I3� 3 for
the prior on U , and set the degrees of freedom for the prior
on V equal to 13 and the scale matrix equal to 6 ¢ I7� 7, each
ensuring a proper but relatively diffuse prior. For the nonzero
elements of P , the corresponding elements of c0 and C0 are
set equal to 1 and 1000, respectively, which re� ects the lack
of information on P . A uniform random matrix with zeros
preassigned is used for an initial value of P .

Table 3 contains posterior summaries for some model
parameters, based on 5,000 values subsampled from 50,000
iterations following a 50,000 burn-in period. For the source
composition matrix P , these summaries are obtained in terms
of normalized P (sum to 1) because it is identi� ed only up
to a constant multiplier as mentioned in Section 3. The AR
coef� cients ”k for the source contributions are estimated to be
O”1 D 0817, O”2 D 0797, and O”3 D 0815, with the corresponding

posterior standard deviations .042, .046, and .042, respectively.

Table 3. Summaries of Posterior Distributions for P, ˆ, Diagonal Elements of V , and è When the
Data Is Generated by Model (3) and the Time Series Approach is Used

Parameter j 1 2 3 4 5 6 7

P1j Mean 0 0242 0 0102 0308 0129 0220
SD 0 0008 0 0010 0008 0006 0013
LSCR 0 0223 0 0077 0290 0115 0187
LCI 0 0229 0 0086 0296 0120 0199
UCI 0 0254 0 0117 0321 0138 0241
USCR 0 0261 0 0124 0328 0143 0252

P2j Mean 0207ü 0 0256 0 0026 0062ü 0447
SD 0018 0 0011 0 0016 0009 0012
LSCR 0162 0 0231 0 0001 0039 0417
LCI 0177 0 0241 0 0003 0048 0428
UCI 0234 0 0276 0 0055 0076 0465
USCR 0248 0 0285 0 0071 0083 0474

P3j Mean 0320 0242 0029 0318ü 0 0091 0
SD 0008 0008 0009 0007 0 0006 0
LSCR 0300 0221 0006 0300 0 0076 0
LCI 0307 0228 0014 0306 0 0081 0
UCI 0333 0256 0044 0330 0 0101 0
USCR 0340 0263 0051 0337 0 0106 0

ˆj Mean 0654 0779 0697 0600 0512 0582 0503
SD 0216 0125 0188 0197 0255 0124 0251

Vj j Mean 0750 0892 0713 0910 0850 0810 0925
SD 0361 0405 0277 0397 0394 0303 0527

‘ 2
j Mean 10020 0947 10489 0840 10622 10178 10040

SD 0448 0321 0382 0337 0520 0321 0545

NOTES: 1. SD stands for the posterior standard deviation; 2. LCI and UCI stand for the lower limit and upper limit of the 90% credible
interval; 3. Asterisk ( ü ) indicates that the true parameter value is not captured by the 90% credible interval; 4. LSCR and USCR stand
for the lower limit and upper limit of the 80% simultaneous credible region.

Posterior summaries obtained from the approach assum-
ing independence (see Remark 1) are also given in Table 4.
Because this approach does not decompose the error variances
into è and M , we treat the estimates of the error variances
as the estimates for è2

˜
D diag4‘ 2

˜11 : : : 1è2
˜p5 D èCM D 2096.

The hyperparameters of the priors on ‘ 2
…j4j D 11 : : : 1 75 and ƒt

are taken as �0j
D 2, ‚0j

D 5, j D 11 : : : 17, and æ0 D 10 ¢ I3� 3,
respectively. We use the same prior distribution for P as
above. The results are based on a posterior sample of size
5,000 obtained by subsampling from 50,000 values following
a 50,000 burn-in period.

Figure 4 shows the side-by-side barplots of the true source
compositions 4P05 and the posterior mean of P from two dif-
ferent approaches, time series approach (bPts5 and approach
assuming independence 4bPindep5, with R2 values between P0

and estimates. In terms of point estimates, bPts and bPindep , there
does not seem to be a big difference in this case between the
two approaches. However, by comparing Tables 3 and 4, it
can be noted that the approach accounting for dependence in
the data yields much better results in terms of uncertainty esti-
mates (such as the posterior standard deviations and credible
intervals) than the approach not accounting for dependence. In
Table 3, only three of the 15 (nonzero) elements of P0 lie out-
side the 90% credible intervals (all are within the 99% credible
intervals though we do not report them in the table) whereas in
Table 4, six elements of P0 fall outside the 90% credible inter-
vals (� ve of them are not captured even by the 99% credible
intervals). Simultaneous credible regions for the whole matrix
P0 can also be constructed using the method (based on order
statistics) suggested in Besag et al. (1995). Table 3 includes
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Park, Guttorp, and Henry: Multivariate Receptor Modeling 1179

Table 4. Summaries of Posterior Distributions for the Parameters P and è˜ When the Data Is
Generated by Model (3) but the Approach Assuming Independence (given in Remark 1) Is Used

Parameter j 1 2 3 4 5 6 7

P1j Mean 0 0240 0 0101 0305 0130 0224
SD 0 0005 0 0006 0005 0004 0009
LSCR 0 0227 0 0086 0293 0121 0203
LCI 0 0231 0 0091 0297 0124 0210
UCI 0 0248 0 0111 0314 0136 0238
USCR 0 0253 0 0116 0318 0139 0245

P2j Mean 0196ü 0 0262 0 0024 0065ü 0453
SD 0012 0 0008 0 0013 0006 0008
LSCR 0166 0 0242 0 0001 0050 0433
LCI 0176 0 0249 0 0004 0055 0439
UCI 0216 0 0275 0 0045 0075 0466
USCR 0224 0 0282 0 0058 0080 0473

P3j Mean 0325ü 0247 0020ü 0318ü 0 0090ü 0
SD 0005 0006 0006 0005 0 0004 0
LSCR 0312 0234 0005 0306 0 0079 0
LCI 0316 0238 0010 0310 0 0083 0
UCI 0334 0256 0030 0326 0 0097 0
USCR 0338 0261 0035 0330 0 0101 0

‘ 2
˜j D 20961 Mean 20981 30312 20751 20268 20449 20519 30671

SD 0782 0557 0497 0523 0744 0272 10403

NOTES: 1. SD stands for the posterior standard deviation; 2. LCI and UCI stand for the lower limit and upper limit of the 90% credible
interval; 3. Asterisk (ü ) indicates that the true parameter value is not captured by the 90% credible interval; 4. LSCR and USCR stand
for the lower limit and upper limit of the 80% simultaneous credible region.
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Figure 4. Side-by-side Barplots of the True Source Compositions (P0) and the Estimated Compositions Obtained From Two Different
Approaches, Time Series Approach and Approach Assuming Independence.
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the 80% credible regions and these contain all elements of P0

(the same holds for the 70% credible regions too). In Table 4,
� ve elements of P0 are still outside the 80% credible regions
(they are not captured even by the 90% credible regions). This
is a natural consequence of not taking into account the corre-
lation in the errors into the calculation of standard errors (pos-
terior standard deviations here). In fact, the posterior standard
deviations in Table 4 are much smaller than they should have
been.

To see how much performance of the methods depends
on underlying distributional assumptions, a few sensitivity
analyses were carried out. To simulate asymmetrically dis-
tributed data (lognormallike distribution of species), we gen-
erate factors 4�5 and errors (‡ and „) of model (3) from
the multivariate lognormal distributions with the parameters
4105 ¢131 01 ¢ I3� 35, 4071 02 ¢ I7� 75, and 4071 02 ¢ I7� 75, respectively.
The errors are centered so that they have mean zero before
added to �tP in model (3). The same values for P0, ”k 4k D
11 : : : 135, and ˆj 4j D 11 : : : 1 75 as before are used. The pro-
portions of the error standard deviations to the model standard
deviations are about 10–30% in this case. The histograms of
the resulting simulated data are of lognormal shape. The two
approaches, time series approach and the approach assuming
independence, developed under the assumption of normally
distributed factors and errors, are applied to this data. This
enables evaluation of the performance of the two approaches
when the distributional assumptions are violated. The perfor-
mance of the two approaches is not affected by violation of
distributional assumptions. Although R2 values (between P0

and estimated P) for two approaches are both close to .99,
the time series approach outperforms the approach assuming
independence in terms of uncertainty estimation. For the time
series approach, only one element of P0 falls outside the cor-
responding 90% credible interval, and all are captured by the
99% credible intervals. On the other hand, for the approach
assuming independence, 8 out of 15 (nonzero) elements of P0

are outside the 90% credible intervals and 4 are not captured
even by the 99% credible intervals.

Next we investigate the effect of serial correlations on
uncertainty estimation of P . Several datasets are generated
using different values of ˆ and ” (ranging from 0 to .9)
under model (3), with an appropriate adjustment to the size
of error variances so that the proportions of the error stan-
dard deviations to the model standard deviations are approxi-
mately in the range of 10–30%. The same P0 (given in Table
2) is used throughout the simulation. The two methods are
then applied to the same dataset each time and their perfor-
mance is compared in terms of the uncertainty estimates for
P . When there is only weak serial correlation in the errors
4ˆj < 051 j D 11 : : : 1 75, both methods seem to perform well
regardless of the value of ” (almost all elements of P0 lie in
the corresponding 90% credible intervals for both approaches).
The time series approach outperforms the approach assuming
independence when there is moderate serial correlation in the
error (ˆ is greater than .5). As the value of ˆ increases, per-
formance of the approach assuming independence deteriorates
considerably whereas the time series approach works consis-
tently well. When ˆj

D ”k
D 09 4j D 11 : : : 17, k D 11 : : : 135,

10 elements of P0 fall outside the corresponding 90% cred-
ible intervals (8 of them are outside the 99% credible inter-
vals) obtained from the approach assuming independence,
whereas all elements of P0 are within the 90% credible inter-
vals obtained from the time series approach. We also observed
the same tendency for asymmetrically distributed data gener-
ated using lognormally distributed factors and errors with var-
ious values of ˆ and ”. Our limited simulation study suggests
that in� ation of estimated errors using the approach assuming
independence would be nonignorable whenever we observe
moderate to strong serial correlation (say greater than .5) in
the residual plot.

5. APPLICATION TO ATLANTA DATA

The 1990 Atlanta data described in Section 1 has two types
of temporal dependence structure, correlation in � and corre-
lation in ˜ (see Figures 2 and 3). We use model (6) with q D 3
to analyze this dataset consisting of 538 measurements on 9
chemical species. For identi� ability conditions, zeros are pre-
assigned for CyHx C 2MHx (cyclohexaneC 2-methylhexane)
and 2,3-dimethylpentane (2,3-DMP) of source 1 (Roadway),
acetylene and propene of source 2 (Gasoline), acetylene and
2,3-dimethylpentane (2,3-DMP) of source 3 (Headspace). The
information on zero (or near zero) elements was obtained from
an environmental engineer’s judgment and also from direct
source measurements shown in Table 1 (the relative concen-
trations of those species in each source are observed to be
very low).

Our MCMC analysis uses the following hyperparameters
for the prior distributions. For the nonzero elements of P , the
corresponding elements of c0 and C0 are set equal to 1 and
100, respectively, which is a vague (but still proper) speci� ca-
tion re� ecting the lack of information on the source composi-
tions. For the prior on ‘ 2

j 4j D 11 : : : 195, we take �0j
D 5 and

‚0j as the jth element of 481 21201814141 212185, and for the
prior on U , we take r0

D 20, ë0
D diag4321321 165. Finally, for

the prior on V , we set the degrees of freedom equal to 20 and
the scale matrix equal to diag420151 501 201 101 1015151205.
This choice of the hyperparameter values was made to ensure
that the prior distributions are moderately informative but � ex-
ible enough to cover the range of possible values of the param-
eters. For a starting value of P , a uniform random matrix
with zeros preassigned was used (though the chain can con-
verge much faster by the use of good starting values). For
each parameter, a posterior sample of size 5,000 was obtained
by subsampling every 10th from 50,000 values following a
50,000 burn-in period. We monitored trace plots of all the
key parameters, P (normalized), è, U (scaled), V , ê, and
ä, to ensure the chain has converged to the area of high
posterior density by the end of the burn-in period. We also
inspected the autocorrelation function plots of posterior sam-
ples for those parameters though we do not present any of
those plots in the article due to limited space. Subsampling
every 10th sample seemed to be satisfactory in terms of break-
ing autocorrelations. When the chain had been further thinned
by subsampling every 50th, posterior inference did not seem
to change recognizably. Table 5 contains posterior summaries
for some model parameters. The AR coef� cients ”k for
the source contributions are estimated to be O”roadway

D 0718,
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Park, Guttorp, and Henry: Multivariate Receptor Modeling 1181

Table 5. Summaries of Posterior Distributions for P, ˆ, Diagonal Elements of V , and è for the Atlanta Data When the Time Series Approach Is Used

Parameter Species acetylene propene nButane 2Mpentan 3Mpentan benzene CyHxC2MHx 2,3-DMP 2,2,4-TMP
j 1 2 3 4 5 6 7 8 9

roadway Mean 0313 0137 0294 0067 0036 0135 0 0 0019
SD 0022 0010 0033 0006 0003 0008 0 0 0006
LSCR 0265 0116 0193 0048 0027 0118 0 0 0003
LCI 0280 0123 0237 0056 0031 0124 0 0 0008
UCI 0351 0154 0344 0076 0041 0148 0 0 0028
USCR 0381 0167 0368 0080 0044 0158 0 0 0035

gasoline Mean 0 0 0218 0198 0115 0070 0097 0084 0218
SD 0 0 0036 0007 0004 0004 0007 0006 0014
LSCR 0 0 0112 0182 0105 0059 0082 0071 0187
LCI 0 0 0156 0188 0108 0064 0087 0075 0197
UCI 0 0 0274 0209 0122 0077 0108 0093 0241
USCR 0 0 0300 0218 0128 0081 0117 0101 0260

headspace Mean 0 0004 0733 0130 0068 0040 0007 0 0019
SD 0 0004 0022 0010 0006 0007 0005 0 0010
LSCR 0 0000 0673 0104 0052 0020 0000 0 0000
LCI 0 0000 0700 0114 0058 0028 0001 0 0004
UCI 0 0011 0768 0147 0077 0051 0016 0 0035
USCR 0 0017 0788 0158 0084 0060 0023 0 0046

ˆj Mean 0569 0755 0598 0230 0249 0408 0299 0550 0722
SD 0089 0044 0096 0070 0061 0093 0064 0058 0043

Vj j Mean 0904 0157 30696 0549 0209 0187 0207 0089 0563
SD 0203 0033 10201 0130 0047 0033 0046 0020 0134

‘ 2
j Mean 0711 0088 20232 0147 0056 0109 0068 0032 0220

SD 0116 0012 0526 0015 0005 0013 0009 0003 0026

NOTES: 1. SD stands for the posterior standard deviation; 2. LCI and UCI stand for lower limit and upper limit of the 90% credible interval; 3. LSCR and USCR stand for lower limit and upper
limit of the 80% simultaneous credible region.

O”gasoline D 0675, and O”headspace D 0282, with the correspond-
ing posterior standard deviations .024, .027, and .095,
respectively.

We also report posterior summaries obtained from the
approach assuming independence (Remark 1) in Table 6. For
hyperparameters of the prior on ‘ 2

˜j 4j D 11 : : : 1 95, we take
�0j

D 2 and ‚0j as the jth element of 451311014131 31 212145,
and for the prior on ƒt , we set æ0 D diag431 31 25. For P , the
same vague prior distribution as before (elements of c0 and
C0 are 1 and 100, respectively) is used. The results are based
on a posterior sample of size 5,000 obtained by subsampling
from 50,000 values following a 50,000 burn-in period.

Because the true source composition P0 is unknown (as
opposed to the simulation study), an objective comparison of
the performance of two approaches is dif� cult. As a guide-
line, we � rst compare the estimated source compositions from
two approaches with direct source measurements, Pmeasured ,
given in Table 1. Figure 5 shows the side-by-side barplots of
the measured source compositions and estimated compositions
from the two different approaches, the time series approach
4bPts5 and the approach assuming independence 4bPindep5, with
R2 values between measured and estimated compositions.
General patterns are similar for the source compositions
derived from ambient data (bPts and bPindep) and for direct source
measurements (Pmeasured ), which is good for source identi� ca-
tion purposes. For the roadway pro� le, however, there seems
to be some deviation between estimated and measured pro� les.
One possible explanation for this is that the measurements for
the roadway pro� le were taken at the tunnel (during morning
rush hour) and might not have captured a full range of vari-

ability of all motor vehicle operating conditions in the ambient
data.

As mentioned in Section 1, the uncertainty estimates for
bPindep provided in Table 6 are considered too small com-
pared to what they should have been (uncertainty estimates for
bPindep obtained by adjusting for the correlation). On the other
hand, the uncertainty estimates for bPts in Table 5 incorporat-
ing the correlation in the data in the estimation procedure are
expected to be not only correct but also smaller than the cor-
rect uncertainty estimates for bPindep (adjusted for the correla-
tion). In other words, bPts is expected to be more ef� cient than
bPindep . For the headspace pro� le (for which the measured and
the estimated compositions show the best agreement for both
approaches), 5 elements of the measured headspace compo-
sition lie outside the corresponding 90% credible intervals in
Table 6, and the same holds even for the 99% credible inter-
vals (not shown in the table) and for the 80% simultaneous
credible regions. On the other hand, in Table 5, only 2 ele-
ments of the measured headspace pro� le fall outside the cor-
responding 90% credible intervals and all are captured by the
99% credible intervals and by the 80% credible regions.

6. CONCLUSIONS AND DISCUSSION

In this article, we have developed a time series extension
of multivariate receptor modeling to capture, in the esti-
mation process, extra variability owing to temporal depen-
dence in air pollution data. Recent developments in MCMC
methodology make estimation of parameters of complex mod-
els possible. By modeling the dependence structure, we
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Table 6. Summaries of the Posterior Distribution for the Parameters P and è˜ for the Atlanta Data
When the Approach Assuming Independence Is Used

Parameter Species acetylene propene nButane 2Mpentan 3Mpentan benzene CyHxC 2MHx 2,3-DMP 2,2,4-TMP
j 1 2 3 4 5 6 7 8 9

roadway Mean 0309 0132 0287 0075 0041 0134 0 0 0023
SD 0009 0004 0014 0003 0002 0003 0 0 0004
LSCR 0287 0122 0248 0066 0036 0125 0 0 0013
LCI 0295 0126 0262 0069 0037 0128 0 0 0017
UCI 0325 0139 0309 0080 0044 0139 0 0 0030
USCR 0334 0143 0322 0083 0046 0143 0 0 0034

gasoline Mean 0 0 0174 0197 0116 0074 0106 0092 0241
SD 0 0 0017 0004 0002 0003 0003 0003 0007
LSCR 0 0 0127 0188 0110 0068 0099 0085 0223
LCI 0 0 0145 0191 0112 0070 0101 0088 0229
UCI 0 0 0202 0203 0119 0079 0112 0097 0253
USCR 0 0 0216 0206 0122 0081 0115 0100 0260

headspace Mean 0 0002 0611 0183 0101 0053 0034 0 0017
SD 0 0002 0015 0007 0004 0005 0004 0 0008
LSCR 0 0000 0571 0167 0092 0041 0023 0 0001
LCI 0 0000 0585 0172 0095 0045 0027 0 0004
UCI 0 0006 0635 0194 0107 0061 0040 0 0030
USCR 0 0010 0648 0202 0112 0066 0044 0 0037

è2
˜(D è CM) Mean 10828 0322 120498 0117 0051 0174 0158 0048 0662

SD 0161 0029 0879 0012 0004 0018 0011 0005 0055

NOTES: 1. SD stands for the posterior standard deviation; 2. LCI and UCI stand for lower limit and upper limit of the 90% credible interval; 3. LSCR and USCR stand for lower limit and upper
limit of the 80% simultaneous credible region.
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Figure 5. Side-by-side Barplots of the Measured Source Compositions and the Estimated Compositions Obtained From Two Different
Approaches, Time Series Approach and Approach Assuming Independence, for the Atlanta Data.
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can get more reliable estimates for the source composi-
tions and their uncertainties, which are our primary interest.
As a by-product, we can assess the amount of variabil-
ity and autocorrelation in the source contributions and the
errors. It also makes it possible to forecast the level of pol-
lutants 4ytCk5 and the amount of pollution 4� tCk5, which
has been regarded as one of the model limitations in pre-
vious receptor modeling approaches (see the EPA discu-
ssion at http://www.epa.gov/oar/oaqps/pams/analysis/

receptor/rectxtsac.html).
In developing our methods, we assumed that the errors are

normally distributed. Environmental data often contain many
outliers, and it is sometimes more appropriate to use the log-
normal distribution to describe the data even though the results
of limited simulations in Section 4 suggest that our meth-
ods are robust to violations of normality assumptions. The
usual transformation technique does not help in the context of
receptor modeling. By log transforming the data the chemical
mass balance equation of the model no longer applies directly,
and we need to deal with model identi� ability using differ-
ent conditions. Alternatively, we may consider a multivariate
T-distribution or a mixture of normal distributions to describe
the error distribution. In the application to Atlanta data, the
histogram of the residuals for each species looks, in general,
bell shaped, but shows a few outliers for some of the species.
This might suggest the use of a heavy-tailed distribution for
errors even though it was not pursued further in this article.
Nonnormal dynamic modeling is still an active research area
(see West and Harrison 1997), and we expect that multivariate
receptor modeling can be extended further using nonnormal
dynamic models.

Air pollution data are often obtained from multiple moni-
toring sites. When a single pollutant is measured over multiple
sites, this can be � tted into the current multivariate receptor
modeling framework by treating the different sites as vari-
ables. How to incorporate spatial variability as well as tempo-
ral variability in modeling when multiple species are measured
is a challenging problem. Even in the case of no temporal
dependence, this problem remains open.

Finally, chemical reactivity is a major concern that could
invalidate a receptor modeling approach because it would vio-
late the basic model assumption of chemical mass balance. For
this reason, receptor models have been applied only to rela-
tively unreactive species as mentioned in Section 1. Develop-
ing receptor models for reactive species is one of the highest
research priorities in air pollution work.

[Received March 2000. Revised June 2001.]
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